Research & Applications


Scientists use nuclear magnetic resonance to identify olive oil blends

January 5, 2021, 9:35AMANS Nuclear Cafe

New research confirms the growing relevance of nuclear magnetic resonance technologies for the olive oil industry, according to the Olive Oil Times, based in Newport, R.I.

The latest Italian study, published in the scientific journal Foods, hints at the new opportunities emerging from the identification of the molecular footprint of extra virgin olive oil blends, which could be used to not only certify their contents but also to determine the transformational processes applied to the product.

Nuclear undervalued in European hydrogen strategy, report says

January 4, 2021, 12:16PMANS Nuclear Cafe

The European Commission’s current strategy for developing a hydrogen economy—part of its overall goal of achieving a climate-neutral European Union by 2050—needs to make more room for nuclear power. That’s according to a report published in December by the New Nuclear Watch Institute (NNWI), an industry-supported think tank based in the United Kingdom.

The 28-page report, On the Role of Nuclear Power in the Development of a European Hydrogen Economy, notes that the commission’s strategy, set out in last summer’s A Hydrogen Strategy for a Climate-Neutral Europe, sees the long-term future of the European hydrogen economy as one based on hydrogen production solely utilizing renewable power, thereby excluding nuclear from a lasting role in the market.

Game-playing AI technique may lead to cheaper nuclear energy

January 4, 2021, 7:00AMANS Nuclear Cafe

In this AI-designed layout for a boiling water reactor, fuel rods are ideally positioned around two fixed water rods to burn more efficiently. MIT researchers ran the equivalent of 36,000 simulations to find the optimal configurations. Colors correspond to varying amounts of uranium and gadolinium oxide in each rod. Image: Majdi Radaideh/MIT

Researchers at the Massachusetts Institute of Technology and Exelon show that by turning the nuclear fuel assembly design process into a game, an artificial intelligence system can be trained to generate dozens of optimal configurations that can make each fuel rod last about 5 percent longer, saving a typical power plant an estimated $3 million a year, the researchers report.

The AI system can also find optimal solutions faster than a human and can quickly modify designs in a safe, simulated environment. The results appear in the journal Nuclear Engineering and Design.

Award Winners: Fostering innovation in student research

December 29, 2020, 12:23PMNuclear News

The Department of Energy’s Office of Nuclear Energy created the Innovations in Fuel Cycle Research Awards program for university students in 2010. Now known as the Innovations in Nuclear Technology R&D Awards, the program aims to engage faculty and students in innovation and innovative thinking, increase experiential activities related to nuclear technology, and prepare students to engage in nuclear policy discussions.


Savannah River contract awarded to Battelle-led group

December 23, 2020, 3:05PMNuclear News

A new M&O contract was awarded for SRNL. Photo: DOE

A management and operating (M&O) contract for the Savannah River National Laboratory (SRNL) valued at approximately $3.8 billion was awarded to Battelle Savannah River Alliance (BSRA), a consortium of universities and private firms led by Columbus, Ohio–based Battelle. Awarded by the Department of Energy’s Office of Environmental Management, the cost-plus-award-fee contract will include a five-year base period (inclusive of 120-day transition period) and potential term of up to five more years, for a total period of up to 10 years.

As announced by the Department of Energy’s Office of Environmental Management on December 22, the new SRNL M&O contract is expected to enhance the laboratory’s ability to focus on research and development, increase its flexibility to pursue more diversified projects, and attract talent and the involvement of other research and academic institutions in its projects.

BSRA takes over responsibility for the SRNL work scope from the larger Savannah River Site (SRS) M&O contract with Savannah River Nuclear Solutions. The transition of the management and operation of SRNL to the new contract will start following issuance of a notice to proceed to BSRA, the DOE said.

ARC-20 cost-share funds go to ARC Nuclear, General Atomics, and MIT

December 23, 2020, 7:00AMNuclear News

Designs chosen for ARC-20 support could be commercialized in the mid-2030s. Graphic: DOE

The Department of Energy’s Office of Nuclear Energy (DOE-NE) has named the recipients of $20 million in Fiscal Year 2020 awards for Advanced Reactor Concepts–20 (ARC-20), the third of three programs under its Advanced Reactor Demonstration Program (ARDP). The three selected teams—from Advanced Reactor Concepts LLC, General Atomics, and the Massachusetts Institute of Technology—will share the allocated FY20 funding for ARC-20 and bring the total number of projects funded through ARDP to 10. DOE-NE announced the news on December 22.

The DOE expects to invest a total of about $56 million in ARC-20 over four years, with industry partners providing at least 20 percent in matching funds. The ARDP funding opportunity announcement, issued in May 2020, included ARC-20 awards, Advanced Reactor Demonstration awards, and Risk Reduction for Future Demonstration awards.

DOE issues Versatile Test Reactor draft EIS, confirms INL as its “preferred alternative”

December 21, 2020, 2:37PMNuclear News

The Department of Energy has begun the environmental review of its proposed Versatile Test Reactor (VTR), releasing a draft environmental impact statement (EIS) for public review and comment on December 21. The sodium-cooled, fast-neutron-spectrum VTR is intended to enhance and accelerate U.S. research, development, and demonstration of innovative nuclear energy technologies.

New U.S. space nuclear policy released

December 18, 2020, 7:04AMNuclear News

An artist's concept of a fission power system on the lunar surface. Image: NASA

A national strategy for the responsible and effective use of space nuclear power and propulsion (SNPP)—Space Policy Directive-6 (SPD-6)—was released by the White House on December 16 as a presidential memorandum.

Space nuclear systems include radioisotope power systems and nuclear reactors used for power, heating, or propulsion. Nuclear energy can produce more power at lower mass and volume compared to other energy sources and can shorten transit times for crewed and robotic spacecraft, thereby reducing radiation exposure in harsh space environments. SPD-6 establishes a road map for getting space nuclear systems into service and sets up high-level goals, principles, and federal agencies’ roles and responsibilities.

Advanced reactors take center stage in Popular Mechanics

December 17, 2020, 6:59AMANS Nuclear Cafe

The January/February 2021 issue of Popular Mechanics hit subscriber mailboxes this week with a stark cover image of a single small reactor under the headline, “Tiny nuclear reactors are about to revolutionize American energy.” The story looks at advanced reactors as a pivotal step to “redeem nuclear’s stature in American energy.”

A good primer: The article does a good job introducing the casual reader to the idea that “bigger is no longer better” and that the future of nuclear power in the United States will most likely be “a combination of traditional large plants and smaller, safer megawatt reactors.”

Advanced reactors, including small modular reactors, show that nuclear is no longer a one-size-fits-all operation, the article notes. The industry now “is all about personalization,” says Ken Canavan, Westinghouse’s chief technical officer, who is quoted in the article. The capacity and scalability of SMRs “is just irreplaceable,” he adds.

The article explains that SMRs, microreactors, and other advanced reactor designs will be able to bring reliable, carbon-free power to small or remote locations, replacing fossil fuel power plants and supplementing the “resource-sucking downtimes left by renewables.”

Five advanced reactor designs get DOE risk reduction funding

December 16, 2020, 3:00PMNuclear News

The Department of Energy today announced $30 million in initial fiscal year 2020 funding—with the expectation of more over the next seven years—for five companies selected for risk reduction for future demonstration projects. The chosen reactor designs from Kairos Power, Westinghouse, BWX Technologies, Holtec, and Southern Company collectively represent a range of coolants, fuel forms, and sizes—from tiny microreactors to a molten salt reactor topping 1,000 MWe. They were selected for cost-shared partnerships under the Office of Nuclear Energy’s Advanced Reactor Demonstration Program (ARDP) through a funding opportunity announcement issued in May 2020.

“All of these projects will put the U.S. on an accelerated timeline to domestically and globally deploy advanced nuclear reactors that will enhance safety and be affordable to construct and operate,” said Energy Secretary Dan Brouillette. “Taking leadership in advanced technology is so important to the country’s future, because nuclear energy plays such a key role in our clean energy strategy.”

Advanced reactors important for carbon-free power production in U.S., tweets Vice News

December 15, 2020, 12:13PMANS Nuclear Cafe

A video posted to Twitter by Vice News discusses the prospect of advanced reactors being an important mix of carbon-free power production in the United States. Hosted by Gelareh Darabi, an award-winning Canadian-British-Iranian journalist and documentary filmmaker, the video provides quick and easy statistics for the general audience and pulls from social media influencer I_sodope. It also includes comments from nuclear experts.

New 3D-printed fuel assembly brackets to load at Browns Ferry next spring

December 15, 2020, 7:00AMNuclear News

Additively manufactured channel fastener. Source: ORNL

The Tennessee Valley Authority will load four new 3D-printed fuel assembly brackets next spring at its Browns Ferry nuclear power plant, in Athens, Alabama. The brackets will be the first of their kind loaded into a commercial reactor, according to the Department of Energy.

The components, also called channel fasteners, were manufactured at Oak Ridge National Laboratory, in Tennessee, in a joint project with TVA and its fuel supplier, Framatome, as part of the lab’s Transformational Challenge Reactor program. The program is designed to introduce new manufacturing techniques and approaches to industry partners in order to speed up the deployment of nuclear systems.

Kairos Power test reactor comes to repurposed Oak Ridge site

December 11, 2020, 2:41PMNuclear News

An aerial view of the ETTP site. Photo: Heritage Center, LLC

Kairos Power plans to site a test reactor it has dubbed Hermes at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tenn. The company has executed a Memorandum of Understanding with Heritage Center, LLC, to acquire the former K-33 gaseous diffusion plant site at ETTP, subject to ongoing due diligence evaluations. The announcement was made today, during the 2020 East Tennessee Economic Council Annual Meeting and Awards Celebration.

“We are thrilled at the prospect of coming to East Tennessee,” said Michael Laufer, cofounder and chief executive officer of Kairos Power. “The infrastructure available at ETTP, combined with its proximity to key collaborators at the Oak Ridge National Laboratory, makes this a great location to demonstrate our technology. The successful commissioning of Hermes builds on our current technology development programs and extensive engagement with the U.S. Nuclear Regulatory Commission. Ultimately, Hermes will prove that Kairos Power can deliver real systems at our cost targets to make advanced nuclear a competitive source of clean energy in the United States.”

Lou Martinez, vice president of strategy and innovation, added, “Today is an important day for Kairos Power. We are celebrating our 4th anniversary by showcasing an important milestone.”

Powering the future: Fusion advisory committee sets priorities

December 9, 2020, 3:00PMNuclear News

The Fusion Energy Science Advisory Committee (FESAC), which is responsible for advising the Department of Energy’s Office of Science, on December 4 published the first public draft of Powering the Future: Fusion and Plasmas, a 10-year vision for fusion energy and plasma science. FESAC was charged with developing a long-range plan in November 2018.

The scope: The report, which is meant to catch the eye of leaders in the DOE, Congress, and the White House, details the needs of the fusion and plasma program identified by a FESAC subcommittee—the DOE Fusion Energy Sciences Advisory Committee for Long Range Planning—with the help of the fusion research community. The yearlong Phase 1 of the Community Planning Process, organized under the auspices of the American Physical Society’s Division of Plasma Physics, gathered input and yielded a strategic plan that is reflected in the FESAC’s draft report.

DOE to provide $12 million for nuclear data research

December 8, 2020, 3:03PMNuclear News

The U.S. Department of Energy plans to provide up to $12 million for new research on nuclear data in support of crosscutting research. The aim of the program is to expand and improve the quality of data needed for a wide range of nuclear-related activities, from basic research in nuclear science to isotope production and nuclear nonproliferation efforts.

“Increasingly, precise data on the properties of atomic nuclei are central to enabling groundbreaking advances in medicine, commerce, and national security,” said Chris Fall, director of the DOE’s Office of Science, on December 7. “This program targets crosscutting opportunities to enhance the curation of existing nuclear data archives, as well as research to lay the groundwork for new applications in areas of national need.”

DOE funding available for research on high-energy-density plasmas

December 2, 2020, 3:00PMNuclear News

Photo: Energy.gov

A plan to provide up to $9 million for work related to high-energy-density laboratory plasmas (HEDLP) was announced jointly on December 2 by the Department of Energy’s Office of Science and the DOE’s National Nuclear Security Administration (NNSA).

A funding opportunity announcement, “High-Energy-Density Laboratory Plasma Science,” is available on the federal grants website.

Applications are open to domestic universities, industry, and nonprofit research institutions and are due by February 18, 2021. Funding will be awarded based on a competitive peer review.

White paper shines light on significance of irradiation

November 25, 2020, 12:00PMNuclear News

With input from the American Nuclear Society and other organizations, the International Irradiation Association has published a white paper summarizing all of the significant uses of radiation processing and the global economic, social, and environmental benefits that arise from the technologies. The nontechnical document, Uses and Applications of Radiation Processing, is aimed at people and organizations that are not familiar with radiation processing, highlighting how irradiation is routinely used in an array of diverse and beneficial applications.

“Though largely unknown by the public, radiation processing, or ‘irradiation,’ touches everyone’s life,” states the paper, which was released on November 24.

The 11-page white paper goes on to summarize the applications of radiation processing, including medical sterilization, food irradiation, wastewater treatment, and other uses. An overview of the different technologies used to irradiate materials, including gamma, electron beam, and X-ray sources, is also provided.

New research planned for high-energy physics

November 23, 2020, 10:37AMNuclear News

The DOE is expected to fund high-energy physics research at its Fermi National Accelerator Laboratory, shown in this rendering. Image: Fermilab

The Department of Energy plans to provide $100 million over the next four years for new research in high-energy physics. The research is expected to focus on topics such as the Higgs boson, neutrinos, dark matter, and dark energy in an effort to advance understanding of the universe at the most fundamental level. The Office of High Energy Physics (HEP) within the DOE’s Office of Science is sponsoring the research funding opportunity.

The DOE’s funding opportunity announcement, “FY 2021 Research Opportunities in High Energy Physics,” can be found on the HEP funding opportunities page.

High-energy physics serves as a cornerstone of America’s science efforts, the DOE said on November 17, adding that it plays a major role in nurturing top scientific talent and building and sustaining the nation’s scientific workforce. Applications will be open to universities, industry, and nonprofit institutions, with awards selected by competitive peer review and contingent on congressional appropriations.

DOE tags INL as “preferred alternative” to host the Versatile Test Reactor

November 19, 2020, 3:16PMNuclear News

Rendering of the proposed Versatile Test Reactor. Image: Idaho National Laboratory

The Department of Energy won’t publish its draft environmental impact statement (EIS) for the Versatile Test Reactor (VTR) until mid-December. In a November 19 announcement on Twitter, however, the DOE’s Office of Nuclear Energy said that the yet-to-be-released EIS lists Idaho National Laboratory as the preferred alternative to site the VTR.

The DOE plans to submit the draft EIS for public comments early next month. The DOE won’t make a final decision on the design, technology selection, and location for the VTR until the completion of the EIS and record of decision in late 2021.

Testing for Terrestrial Energy’s IMSR under way with research partners

November 19, 2020, 7:00AMNuclear News

Terrestrial Energy and the Nuclear Research and Consultancy Group (NRG) have started a graphite irradiation testing program at NRG’s Petten Research Centre’s High Flux Reactor (HFR), located in the Netherlands. According to Terrestrial Energy, which is based in Ontario, Canada, the work is part of broader program of confirmatory testing of components and systems for the company’s Integral Molten Salt Reactor (IMSR), designed to produce both electricity and industrial heat.

The testing program at NRG was planned to confirm the predicted performance of selected graphite grades throughout the seven-year cycle of an IMSR core. The testing was designed in cooperation with Frazer-Nash Consultancy, and will simulate IMSR core conditions at a range of operating temperatures and neutron flux conditions.

“Our work with NRG at its Petten HFR facility is an important element of our overall IMSR test program, now well underway. The start of in-core irradiation tests speaks to our progress and comes after many months of prior work,” Simon Irish, CEO of Terrestrial Energy, said on November 12. “The NRG work also reflects an important feature of our testing strategy. That is to engage existing laboratories offering existing capabilities rather than build those in-house, a strategy that is essential for our early deployment schedule.”