Research & Applications


Powering our nuclear fleet with artificial intelligence

February 18, 2022, 2:55PMNuclear NewsJ. Thomas Gruenwald, Jonathan Nistor, and James Tusar

We’ve all heard the stories of lost treasures being found in dust-­filled attics, locked away in forgotten wall safes, or hidden in secret compartments of antique desks. Some of these true accounts, such as a rare copy of the Declaration of Independence hidden behind wallpaper or an authentic Van Gogh relegated to collecting dust in an attic, can lead to seven-­ and eight-­figure jackpots when the discoveries are made.

What about our own treasures locked away in long-­forgotten data storage drives or plant process computers? Imagine that you could gain keen insight into every operational issue you have by using the data you’ve been collecting for decades. In a nuclear power plant, data is routinely generated and collected for a myriad of purposes—whether it be for core monitoring, exposure accounting, equipment monitoring, or other reasons. While that data may serve its primary function exceedingly well, the information contained within it and in the aggregate is profoundly richer than most could imagine.

DOE announces $18 million for advanced particle accelerator R&D

February 15, 2022, 3:00PMNuclear News
The Relativistic Heavy Ion Collider at Brookhaven National Laboratory. (Photo: DOE)

The Department of Energy has announced an $18 million funding opportunity for research and development in particle accelerator science and technology for nuclear physics research. Provided through the DOE’s Office of Science, the funding is intended to support “efforts essential to developing world-leading core competencies and transformative technologies that significantly advance the state-of-the-art accelerator capabilities.”

JET celebrates sustained fusion energy production

February 10, 2022, 2:59PMNuclear News
The interior of JET with a superimposed plasma. (Image: EUROfusion)

A new record has been set by the world’s largest operating tokamak, the Joint European Torus (JET). According to the EUROfusion scientists and engineers who work on JET at the U.K. Atomic Energy Authority’s Culham Centre for Fusion Energy, the landmark experiment, announced on February 9, which produced 59 megajoules of fusion energy over five seconds, is powerful proof of fusion’s potential as a clean energy source.

NN Asks: What fuels your commitment to nuclear technology?

February 8, 2022, 12:00PMNuclear NewsKelly Hartless

When I came to work at BWX Technologies immediately after getting my degree in chemical engineering from the University of Virginia, I was amazed to see how nuclear energy could be harnessed to both power and protect our country. Since then, I’ve come to see that nuclear energy can do even more. The nuclear industry’s next tasks are to address climate change, propel us to other bodies in the solar system, and provide power when we arrive. Recently developed coated fuels are an enabling technology for these tasks.

INL team assembles microreactor prototype

February 7, 2022, 3:04PMANS Nuclear Cafe
The MARVEL microreactor prototype in the INL machine shop. (Photo: DOE)

A full-scale, electrically heated prototype for the Department of Energy’s Microreactor Applications Research Validation and Evaluation (MARVEL) project was fabricated in just nine months, according to an article published by Idaho National Laboratory on January 31. The article explains in part how a team from the lab’s machine shop created the prototype.

Bruce Power, General Fusion, and NII see fusion in Ontario’s future

February 3, 2022, 9:30AMNuclear News
General Fusion is aiming to operate a fusion demonstration plant in 2025. (Photo: Bruce Power/General Fusion)

Bruce Power, General Fusion, and the Nuclear Innovation Institute have signed a memorandum of understanding to evaluate the potential deployment of a fusion power plant in Ontario, including in a region on the shores of Lake Huron comprising three counties—Bruce, Grey, and Huron—that has been dubbed the Clean Energy Frontier. Together the three organizations plan to build on existing clean energy technologies and expertise in the region and lead stakeholder and public outreach activities to raise awareness of the potential benefits of fusion energy.

TerraPower seeks fast reactor data through time-tested U.S.-Japan research ties

February 1, 2022, 3:02PMNuclear News
A rendering of the Natrium plant. (Image: TerraPower)

Natrium, a 345-MWe sodium fast reactor with a molten salt energy storage system, was developed by TerraPower and GE Hitachi Nuclear Energy. TerraPower is planning to build the first Natrium demonstration reactor by 2028 with 50-50 cost-shared funding of about $2 billion from the Department of Energy’s Advanced Reactor Demonstration Program. And for the requisite data and testing of reactor components to support that deployment, TerraPower is looking to Japan—a country with decades of experience developing sodium fast reactor designs and testing infrastructure.

Burning plasma state achieved at Lawrence Livermore Lab

January 27, 2022, 3:00PMNuclear News
An illustration of the two inertial confinement fusion designs reaching the burning plasma regime, as published in a recent article in Nature. (Image: LLNL)

One of the last remaining milestones in fusion research before attaining ignition and self-sustaining energy production is creating a burning plasma, where the fusion reactions themselves are the primary source of heating in the plasma. A paper published in the journal Nature on January 26 describes recent experiments at Lawrence Livermore National Laboratory’s National Ignition Facility (NIF) that have achieved a burning plasma state.

Bruce Power completes installation of Lu-177 production system

January 27, 2022, 7:00AMNuclear News
Bruce nuclear power plant in Ontario, Canada. (Photo: Bruce Power)

Bruce Power and Isogen, a partnership between Kinectrics and Framatome, have completed the installation of Isogen’s isotope production system (IPS) at Unit 7 of Bruce’s CANDU nuclear power plant in Ontario, Canada, making it the first power reactor in the world with installed capability to produce lutetium-177.

House committee passes bipartisan university research infrastructure bill

January 21, 2022, 9:30AMNuclear News

A bipartisan bill to ensure that U.S. universities are equipped to play a key role in supporting the deployment of advanced nuclear technology and applications has been passed by the House Committee on Science, Space, and Technology.

The National Nuclear University Research Infrastructure Reinvestment Act of 2021 (H.R. 4819) would boost investment in new and existing university nuclear science and engineering infrastructure, establish regional consortia to promote collaboration with industry and national laboratories, and support the development of advanced reactor technology and the workforce required for commercial advanced reactor deployment.

Nuclear technique for mosquito control breeds success in Cuba

January 18, 2022, 7:02AMNuclear News
Schools distributed information about the pilot trial in their communities, and schoolchildren participated in the biweekly release of sterilized male mosquitoes. (Photo: Manuel Fernández, Cuban Agency of Nuclear Energy)

Cuba’s plan to use the sterile insect technique to tackle the spread of dengue—a viral, mosquito-borne disease—relies on expertise and technology from the International Atomic Energy Agency. The technique is not new, having been used to control different insect-vector diseases in diverse regions of the world.

Ultra Safe Nuclear and ORNL strengthen bonds with 3D printing technology

January 14, 2022, 11:58AMNuclear News
Kurt Terrani observing a chemical vapor infiltration furnace at ORNL during densification of additively manufactured nuclear-grade silicon carbide. (Photo: Carlos Jones/ORNL/DOE)

Ultra Safe Nuclear Corporation (USNC), a Seattle-based reactor developer, has licensed an additive manufacturing technique developed at the Department of Energy’s Oak Ridge National Laboratory to print refractory materials into structural and core components for the company’s microreactor designs.

Shadow corrosion is reproduced in University of Michigan lab

January 14, 2022, 9:36AMNuclear News
[CLICK TO VIEW FULL IMAGE] The diagram at left illustrates the experimental setup and the resulting zirconium oxide layer of varying thickness. The second diagram shows the circular zirconium alloy sample that is affected by the band of nickel alloy and radiation. Finally, the electron image at right shows a band of oxidation on the zirconium alloy sample. (Images: Peng Wang, Michigan Ion Beam Laboratory)

A longstanding issue in boiling water reactors—shadow corrosion on zirconium alloy fuel rods and fuel channels—has been reproduced in the Michigan Ion Beam Laboratory as part of an effort to understand and prevent the phenomenon. Research led by Peng Wang, a University of Michigan assistant research scientist in nuclear engineering and radiological sciences, was published in the January 2022 issue of the Journal of Nuclear Materials and described in a recent university news article.

Omar Hurricane: Scientific proof of principle at the NIF

January 14, 2022, 7:00AMNuclear News

Hurricane

In 2012, Omar Hurricane, a distinguished member of the technical staff at Lawrence Livermore National Laboratory, was asked by the laboratory director to lead a team to delve into studying the physics and engineering obstacles preventing fusion ignition at the National Ignition Facility (NIF). The team’s efforts led to a new exploratory “basecamp” strategy and the creation of several pivotal experiments that revealed some of the underlying problems with the ignition point design, while also delivering improved fusion performance and the first evidence of significant alpha particle self-heating.

Hurricane was appointed chief scientist of the Inertial Confinement Fusion Program in 2014, a position he has held ever since. He was named a Fellow of the American Physical Society’s Division of Plasma Physics in 2016 and was recently awarded the Edward Teller Medal from the American Nuclear Society for his work on inertial confinement fusion physics.

How can nuclear energy deliver a clean energy future?

January 12, 2022, 7:03AMNuclear NewsLauren Lathem

One of the things that motivates and inspires me is the impact that access to electricity has on a society. Did you know that 15 percent of the world’s population does not have access to electricity? When I first learned that, I thought, “15 percent, that’s lower than I expected.” But then I realized that 15 percent translates to 1.1 billion people who do not have access to electricity.

Researchers find way to make new cancer medicine

January 11, 2022, 12:13PMANS Nuclear Cafe
INL scientists Matt Snow and Jessica Ward hold a natural vanadium solution that will be separated into the cancer-treating isotope scandium-47. (Photo: INL)

Idaho National Laboratory researchers have, for the first time, used a novel technique using high-energy photons to produce scandium-47 from the element vanadium. The project is a collaboration with Jon Stoner and John Longley from Idaho State University’s Idaho Accelerator Center and Tara Mastren from the University of Utah. The results are published in the journal Applied Radiation and Isotopes.

IAEA combats crop-threatening banana wilt with nuclear technology

January 6, 2022, 3:00PMNuclear News
In 2021, the Fusarium wilt disease continued to spread in banana plantations across South America. (Photo: M.Dita/Biodiversity International, Colombia)

A lethal banana disease, known as the Fusarium wilt or Panama wilt, is spreading rapidly in South America and threatening global supplies of the Cavendish banana, the world’s most popular export variety. Working with experts in the Andean countries of Bolivia, Colombia, Ecuador, and Peru, the IAEA and the Food and Agriculture Organization of the United Nations (FAO) are using irradiation and nuclear-derived techniques to combat, manage, and prevent the spread of the disease. The IAEA describes the work in a December 24 news article.

A critical shift in low-dose radiation research and communication

July 2, 2021, 2:15PMUpdated December 30, 2021, 7:15AMNuclear NewsSusan Gallier
A hot cell at Argonne National Laboratory was used to demonstrate a process for purifying molybdenum-99, an important diagnostic medical isotope. (Photo: Wes Agresta/ANL)

The biggest impact of radiation in our lives may come not from radiation itself, but from regulations and guidelines intended to control exposures to man-made sources that represent a small fraction of the natural radiation around us.

Decades of research have been unable to discern clear health impacts from low levels of ionizing radiation, leading to calls for a new research program—one with a strategic research agenda focused on how the scientific understanding of the health effects of low doses (below 100 millisievert) and low dose rates (less than 5 mSv per hour) can best be augmented, applied, and communicated.

Road to advanced nuclear: How DOE and industry collaborations are paving the way for advanced nuclear reactors

April 2, 2021, 8:58AMUpdated December 28, 2021, 3:38PMNuclear NewsCory Hatch

As 2021 closes, Nuclear News is taking a look back at some of the feature articles published each month in the magazine. The April issue reviewed the current state of advanced reactors. This article looks at how the DOE and private industry are working together to realize the benefits of advanced nuclear.

As electric utilities rush to reduce carbon emissions by investing in intermittent renewables such as wind and solar, they often rely heavily on fossil fuels to provide steady baseload power.

More than 60 percent of the nation’s electricity is still generated with fossil fuels, especially coal-fired and gas-fired power plants that have the ability to quickly ramp up or ramp down power to follow loads on the electric grid. Most experts agree that even with a radical advancement in energy storage technology, relying exclusively on wind and solar to replace fossil fuels won’t be enough to maintain a stable electric grid and avoid the major impacts of climate change.

Fusion and the bounty of electricity

January 8, 2021, 3:05PMUpdated December 27, 2021, 9:50AMNuclear NewsRoss Radel

From the time we discovered how the sun produces energy, we have been captivated by the prospect of powering our society using the same principles of nuclear fusion. Fusion energy promises the bounty of electricity we need to live our lives without the pollution inherent in fossil fuels, such as oil, gas, and coal. In addition, fusion energy is free from the stigma that has long plagued nuclear power about the storage and handling of long-lived radioactive waste products, a stigma from which fission power is only just starting to recover in green energy circles.